نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
73 نتائج ل "Grün, Peter"
صنف حسب:
Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains
Non-ribosomal peptide synthetases (NRPSs) are giant enzyme machines that activate amino acids in an assembly line fashion. As NRPSs are not restricted to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would enable microbial production of a diverse range of peptides; however, the structural requirements for reprogramming NRPSs to facilitate the production of new peptides are not clear. Here we describe a new fusion point inside the condensation domains of NRPSs that results in the development of the exchange unit condensation domain (XUC) concept, which enables the efficient production of peptides, even containing non-natural amino acids, in yields up to 280 mg l . This allows the generation of more specific NRPSs, reducing the number of unwanted peptide derivatives, but also the generation of peptide libraries. The XUC might therefore be suitable for the future optimization of peptide production and the identification of bioactive peptide derivatives for pharmaceutical and other applications.
A natural prodrug activation mechanism in nonribosomal peptide synthesis
We have identified a new mechanism for the cleavage and activation of nonribosomally made peptides and peptide-polyketide hybrids that are apparently operational in several different bacteria. This process includes the cleavage of a precursor molecule by a membrane-bound and D-asparagine-specific peptidase, as shown here in the biosynthesis of the antibiotic xenocoumacin from Xenorhabdus nematophila.
Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria
Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria-nematode-insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship.
Deformation-Induced Martensitic Transformation in Laser Cladded 304 Stainless Steel Coatings
There are only a few cost-effective solutions for coating applications in combined mechanical loading and corrosive environments. Stainless steel AISI 304 has the potential to fill this niche, showing excellent corrosion resistance while utilizing the deformation-induced phase transformation from γ-austenite to α’-martensite, which results in an increase in strength. However, it is not known whether this can occur in laser cladded material. Therefore, laser cladded AISI 304 coatings in as-cladded condition and after heat treatment at 1100 °C for 60 min were investigated before and after bending deformation, by means of light microscopy, energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was shown that due to the dendritic microstructure accompanied by an inhomogeneous distribution of the main alloying elements (Cr and Ni), no deformation-induced phase transformation occurred in the as-cladded coating. The applied approach with subsequent solution heat treatment at 1100 °C for 60 min resulted in a homogeneous γ-austenite microstructure, so that a deformation-induced martensitic transformation (DIMT) could occur in the coatings. However, the volume fraction of martensite that had been formed locally at individual shear bands was rather low, which can be possibly attributed to the high Ni content of the feedstock, stabilizing the γ-austenite microstructure. This study shows the possibility of exploiting the DIMT mechanism in heat-treated laser-cladded AISI 304 coatings.
Identification of Feldin, an Antifungal Polyyne from the Beefsteak Fungus Fistulina hepatica
Fruiting body-forming members of the Basidiomycota maintain their ecological fitness against various antagonists like ascomycetous mycoparasites. To achieve that, they produce myriads of bioactive compounds, some of which are now being used as agrochemicals or pharmaceutical lead structures. Here, we screened ethyl acetate crude extracts from cultures of thirty-five mushroom species for antifungal bioactivity, for their effect on the ascomycete and the basidiomycete . One extract that inhibited the growth of much stronger than that of was further analyzed. For bioactive compound identification, we performed bioactivity-guided HPLC/MS fractionation. Fractions showing inhibition against but reduced activity against were further analyzed. NMR-based structure elucidation from one such fraction revealed the polyyne we named feldin, which displays prominent antifungal bioactivity. Future studies with additional mushroom-derived eukaryotic toxic compounds or antifungals will show whether could be used as a suitable host to shortcut an otherwise laborious production of such mushroom compounds, as could recently be shown for heterologous sesquiterpene production in .
Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus
Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.
Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product
Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin.
An Unconventional Melanin Biosynthetic Pathway in Ustilago maydis
Ustilago maydis is a phytopathogenic fungus responsible for corn smut disease. Although it is a very well established model organism for the study of plant-microbe interactions, its biosynthetic potential has not been totally explored. By analyzing U. maydis genome, we identified a biosynthetic gene cluster whose activation led to the production of a black melanin pigment. Single deletion mutants of the cluster genes revealed that five encoded enzymes are required for the accumulation of the black pigment, including three polyketide synthases (pks3, pks4 and pks5), a cytochrome P450 monooxygenase (cyp4) and a protein with similarity to versicolorin B-synthase (vbs1). Moreover, metabolic profiles of the mutants defective for pks3 and pks4 indicated that the products of these genes catalyze together the first step in the melanin biosynthetic pathway since none of the mutants accumulated any melanin or intermediate products. Mutants deleted for pks5 produced orsellinic acid (OA) and triacetic acid lactone (TAL), suggesting that both products are produced by Pks3 and Pks4. It might thus demonstrate that Pks5 plays a role in a reaction downstream of that catalyzed by Pks3 and Pks4. OA and TAL were also found in extracts of a cyp4 deletion mutant along with several heterodimers of TAL and Pks5-derived orsellinic aldehyde compounds. According to their phenotypes and the intermediate products isolated from these strains, Cyp4 and Vbs1 seem to be involved in reactions downstream of Pks5. Our findings suggest that U. maydis synthesizes a new melanin based on coumarin and pyran-2-one intermediates, while most fungal melanins are derived from 1,8-dihydroxynaphthalene (DHN) or L-3,4-dihydroxyphenylalanine (L-DOPA). Along with these observations, this work also provides an insight into the mechanisms of polyketide synthases in this filamentous fungus.
Hardware /software memory customization for programmable embedded systems
In recent embedded systems architecture, memory represents a major bottleneck in terms of power, performance, etc. While traditionally the processor has been extensively customized to match the application, the memory subsystem has been considered as a black box, relying mainly on technological advances (e.g., faster DRAMS, SRAMs), or simple cache hierarchies to improve power/performance. However, in the memory system there is a substantial inter-dependence between the application access patterns, the memory architecture, and the compiler optimizations, offering tremendous opportunities for hardware (memory architecture) and software (compiler and application) customization. Moreover, while real-life applications contain a large number of memory references to a diverse set of data structures, a significant percentage of all memory accesses in the application are generated from a few instructions in the code, that often exhibit well-known, predictable access patterns. By simultaneously customizing the memory architecture to match the access patterns in the application, while retargeting the compiler optimizations to exploit features of the memory architecture, it is possible to significantly improve the system power, and performance. We present such an approach, where we perform hardware customization of the memory architecture exploring a design space substantially wider than traditionally considered, coupled with memory-aware compiler optimizations to significantly improve the memory system behavior for programmable embedded systems.
Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution
Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system . These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.